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1. INTR:DUCYION, Suppose that in the time intervcal (O o)

customers arrive at a counter at times 'e' T " The
1,9 2' *9

customers are served by a single sex-er in order of arcival. The

server is Idl iff and only if there is no customer in The system.

Denote by %n the service t~mn of the n-th customer. It is supposed

that the service times X (n = 1,2, ... ) and the intsrarrival time=nn

On = 'n+l rk (n = 1,2, ... ) are independent sequences of identically

distrlbted, -iutually indepondont, positivo rmidom variables with

distribution f'unctions

(1) P~A H (x

and

(2) P x = F(x)

Let E 11h &.nd H (3 . Throughout this paper -c and (3

are 3upposed -o be finite and the trivial case P 1 is

excluded.

Denote "y -1(t) the virtual waiting time at ttrr t, i.e.,

11(t) is the 'iAe that a customer would have to wait if' he arrived at

time t. Let "j ~ (T - 0), p I nIs the act-,u waiting time~



of the n-th arriving customer. Denote by f(t) the queue size at

time t, i.o., the total nimber of customers (either waiting or being

served) in the system at time t. Let n = V ( - 0), i.e., in is

the queue size immediately before the arrival of the n-th customer0

In what follows we shall determine the limiting distribution of

11(t) and that of F(t) as t -oo . We note here that the distribution

of the queIe size is independent of the order of serviceo

At this point I should like to mention briefly thi idea which

leads to the notion of virtual waiting time. One can suppose, without

loss of gererality, that each customer is assigned his service time in

advance at his arrival, because the service times are identically

distributed, mutually independent random variables and independent of

the arrival times. Suppose that we use a reading-timer which has a

clock machanism and each tire a customer arrives we set the hand for-

ward by his future service time, Since this clock runs as long as there

are customers in the system, it will at any given instant show the

appropriate virtual waiting time. Thus an arriving customer can

immediately see his own actual waiting time on this clock, 4(t) can

also be interpreted as the occupation time of the server at time t,

that is, the time that is needed to complete the service of all those

customers who arrived before t. In certain queues 1(t) has a real

physical moaning. Por instance, if we consider reading of messages

in a telegi-aph office, then 11(t) can be interpreted as the length

of all messages which remain to be read at time t.

The process .*j(t)j has interest not only in the theory of

queues but also in the investigation of operation of dams. If (t4

denotes the content of a dam at time t, then j(t) has the same



stochastic behavior as the virtual waiting time in a queueing process.

(Cf. J.Gani and N.U. rabhu f~j.)

Finally we introduce the following Laplace-Stieltjes transforms:

(3) 'j(s) a= a5 dH(x)

and

(3 ) = roeoax dFx

which are convergent ".f X (s) 0

2. TEE LIMITING DISTRIBUTION OF THE ACTUAL WAITING TIME.

The following results have been proved by D.V. Lindey 6J: I

then the limiting distribution lir Pt 4 x] W W(x) exists, Independ-

ent of the initial state and it is the unique solution of the follow-

ing integral equation of Wiener-Hopf type

(5x) W W K(x-yy)dWlyW if x - 0

if X <0
where

(6) (x) = H(x+y) dF(y)

and further W(O) 1 0. If A (the trivial case P - n 1

is excluded), then PS lim In a co 1 , whence it follows that

lim pi IXz? 0 for every x irrespective of the initial state.

Define the eventl such that 9 is said to occur at the n-th

arrival if the server is found to be idle at that time. Evidently

is a recrrent event. If . , P , then 9 is persistent, and if

. P , then S is transient. (As to the theory of recurrent events

we refer to Wo Paller C3 pp. 278-310.)



Denote by R(X) the probability that the distance between

tjio 2sccessive ocewrrences of W~ Is x. f.C- then R(CO) ~1

i.e,, R(x) is a proper distribution f'unction. The mean recurrence

time of ? is

(7) x dRl(-x) 1-R(x)j dx Al ~3 (0)
0 0

-1, <~3 then <co wj-h::--c -).,3 ~ ifc~ Co. If 3

Finially -,s iote thaat; P(xt) is~ no*L a 1.2iedi1stribution

fumetion, thcm ii(x) is not one eithe3%.

3. THE~ L2T4ITIUV'G DIS'-PRIBLUlIOX OL, TME1 V1Rr.flT WAITING TIME.

We shall prove

1THEOREI1i 1 TY.", < P ana* YvC-) is -o a lattico dist:ributqon

funcin then the -ji tlnj dst r 1but on

(8 im~ "Al(t) 11Nx

(9) (1*(X H4,U)

where W(%) Is dofinadbLU (5),

0 i

and * denotes convclution, If'. j (the trivtipl. case T4 mn

Is e,~cluded) ther. li tV x 0 for evoEr x. irresp~ective



of the initial state.

PROOF. The proof consists of two parts . F-1-2t we prove

that the linit exists and then we find the explicit form of the

liniting distribution In case of .4 . We need

'.E.U' A 1. Let A be e- 9-'cFut which he-s tho .foalowing

orp , if A occra's at time u and does .." occ'Ar a. time u-s,

Thn th.In ij-li,13 that at least one customer ar.ives In the int;r17o!
(uu':-tj , Denot.ib PA(t) the th stem is in

_1~ _ _a _ ___

state A at time t. If A < P and r'(x) i5 -not a lattice

di tribution fuvicion hn 1 I'1 P( xssadi

.nco.endevit of the initial state.

PROOF. Denote by M(t) the expected ntruer of occurrences

of' in the time interval (O,t . Let Q*(t) doioe the probability

that the system is ir. state A at time t and neoer occurs In the

Inteval (O~tJ. Measuring time from an occurrence of denote by

QA(t) the probability that A occupa at time t and" nevor ocu::'S

during tho Interval (G,tl. Evidently

0ell) A(t) 5111t fo JOqA(t-u) dM(u")o

If A < P, then ie a persistent ovent and consequantly lira Q%(t)
t-> 0:

1Ur QA(t) a 0 W We shall prove later that QA(u) is of bounded

va ,iation 1r every finite interval O,t]. If . < and F(x) is not

a lattice distributicn function, then by a theorem of D. Blackwell DLI



we have for all h~ > 0 that

t -)coh

where Is defined by (7.Thus if A < f3 nd F(x) is not a

lattice dis :ri:ottion funeotioni, then it folloiws frori (ii) ad(12)

thait

lim, ~ ~C r t,(U x

pp, 227-.228,) .incc

(14) ~ Q(n) < RU1

f) or u k 0, th3 intbegra1 ori~c~ rl7git h~md !rfda o:? 13 c oiverg,-)a.

it rev,11i:n 60o poore ttu.b Q()is *' ioandod va-,-ltion

In any flinite 1nt,,3viL1- ';-I~ The pr-oo.2 Is based oca an idea of

W.:,. Smith 1O] ., aivc ti-ti fror-i an occurrence3 of D:It

by VW(t the or~b. a:sr.-i.,valnn in the interval1 -OJ Deflne

:if A oectu-3 st ti~ot end doas rioZ occur L!'i tho int-orv.l

(o ,tj; '5 0 otherwltsz: Poll C u S. t we have

'ZA ) I-QA () v'-N"t )Il x-{Z Xh -9 ~~t) u (L t

wh( nee

QA (t) ZA zi E' + A = 1 Xt0.



and bl. a ;9-i'mtcm

4 ~0i~ ) I2(tQ) u

Avoeorciln,-_:T fr any gubciviclon () t 0  t < t t CTV
0n

t~e intw.'val 20 ,.tJ

rat1.f. ~ I ,~s 0i~i )i ~ I wv.2 2vj P <

1 l E pc qi 'is cI .~ Qolwst a~ 1. (t ;!."A of~ .1

variton n rp I ,~~~n Miiec -)roo of Lemm 1. ]iu

RlileIUZ 1.Bep Lnvi's t <ICz~ (G- 7 aad)S Fr'l be a~ naa-latlc

satlapc le! ;h,- aa;the i~tlta of at D'.-..i jn xa- 1 1 ;hla &~~ k
th~~~~~~~~~~~~~4 a3ta atn e s~~,we :~ hrteee



A satisfies the assumptions of Lemma I and PA(t) = PF(t) : x].

Thus by Lema 1 the limit (8) exists and W(x) is a ronotone non.

decroasng unction of 7. and by 1ie 1a . I .oo) 1

If A > ther. lim P-ao(t) < . 0 fox every xt-2co

irresoecttve of the A.natial Ftateo Since '(t) n for

V <t n ).~, .~ ,and by Lindle.1's theOrem ?1liM "r 0} =
.je e 'n colcl-vd 9.os

for > > xe can conclude lso that in this caso I~lim (t) I "
t- v 00

RiAi~3. 2. Now i e shal prove dire ctly that

P lr (t) 0 oo =' . if -, > r . Denote by 2(t) the number ot o

arrivals in the interval (O,tj By a theoreml of J.L. Doob [2j wt

have

(17) B11M "4'M
t->o

since obviously

we have

(18) 410 + At)

If t -oo in (18),, then we have with probability one that

.. I (t/t- 1/p and

Ihe latter follows from an easy extension of the strorg lawof large

nzmbers° Thus by (18)

t-> c
with probability onD, whence



(19) P Ilim,

This proves that if . > P , then 11m W(t) x3 = 0 for every
t-> 00

Irrespective of the initial state.
Finally it remains only to find lim Pl(t) I x3 = W*(x)

t-* o

if A < P and F(x) is not a lattice distribution function, First

we define a random variable e(t) as the tims between t and the

first arrival after t. Then we observe that thn vector variables

£(t), e(t)l form a Markov process. The initial state is given by

(,"(o),e(0)) where 1(0) is the initial occupation time of the

server and e(O) 1 is the time of the first arrival. (We note

that if the input is a Poisson process, then t)} is a Markov process

in itself,) Define now A as follows: A occurs at time t if

41(t) x and e(t) - y where x 4 0 and y 2;O. This A

satisfies the assumptions of Lemua 1 and if . P and F(x) is not

a lattice distribution function, then hy Lemma I we can conclude that

(20) 1M P{J(t) i x, e(t) ,t-+ 00

exists and is indepondent of the initial state. W*(x,y) is a two

dimensional distribution function, because by Remark 1 W o(oo,co) l I

Let

(a) a* (sw,t) S E [be" -a(t) - O wl

and

(22) dl;s,w) h 0 e - W,(x,y)

0 0

If Ac < and F(x) is not a lattice distribution function, then by



(20)

(23) lim &1O(sw,t) = Is,W)

for '(s) o and =(w) 1 0. If

0

then obviously K*(S) = Q(s ,O)

Now we shall prove

LEMA 2. Denote by m(t) the expected numbe3 of arrivals

in the time interval (O,tj. If m(t+at) m(t) 0(,&t), then

(25) .tw (,+)n*(s. Wt)-.o- sP 0()(wt)

_m(t+,at) - met W....s~ w- n(~)+ At

where P0(t) = P(t) a 0] ,0n(st) a Eje s (t)IG(t) a o

and 6 (W,t) = EtasWO(t)I'7l W o)0

PROOP. if e(t) >A t, then O(t+At) a 0(t) _-4t and

l(t+,&t) U MaX (o,4(t) -At). Thus

Zjesl(t+At) - w 0(t+At)le(t) A t} =

1jet) a o,0(t) > A tj se t)inI(t)lu)=oo() P&tj (1+WAt) +

P4o C*I(t) 14t.,(t),4t1Eie5(t)wtIt)2At,oC(t)>Atj C.+(w+s)At3+ot)

If O(t) SAt, then 9(t+,dt) 0 0 - eI At and q7(t+At)= It) +

- 2 At where% is the total service time of all those customers who

arrive in the interval (t,t+4 t], e is the interarrival time

between the last arrival in (tt+At] and the first arrival after



t+At, and further 0 1 E1 11 and 0 ;1E 2 11 . Thus

Eje-sj(t+At)-wO(t+At) le(t) g&tj a-(s)f (w) Ete'S9(t)- wo(t) lI(t)lAt3+O(t).

Since PtG(t) - At] < m(t+ ht) - m(t) n O(A t) wre obtain by the theorem

of total expectation that

ll*(s,w,t At) = Cl+(w+s)At] - (s,w,t) - sAt PfE(t) = 0,0(t) > tl

(26) E.e"(t) t(i;)= o,0(t) >Atj i [I - N'(s)f (w)]EjeSl(t) 1e(t) gsAt-

PLO WS (A tl + 0 (,&t) .

Since m(t+At)-m(t) a Pf<(t) .4t} + o(At) also holds, we get finally

n#'isvw,,t+At) [I + (w+)At) fl4(s,w,t) - s~t P~(t) MO0

(27) E e' Wt)#71(t) a 03 - C- (s) (w)M Etea s(t)l0(t)W 0o

m(t+At) - m(W3) + o(At)
which is in agreement with (25).

By Lemma 1 the following limits exist li nnls,w,t) =
t-> CO

(cf. (23)), lim PO (t) P (It is oasy to pr;ov directly thab
t-'oo

. 1 - A/P .(Cf. 1]1 p. 1t2. ) and lim 4(w,t) - (w), say
t..P 00

By Lindley's theorem 1rm 11 (s,t) &(s) where

(28) fl(q) " a 3x dW()

and W(x) is defined by (5). By Blackwells theorem

(29)m(t+t) (t) 1
t-+Go A

If we let t -->oo in (25) we obtain

.|



(30) (w+s)fl(s,w) a sPj ' (w) + r 2IsiV wL) fl s)

If w -> 0 in (30), then we get

(31) PE(o) uP + t l(s)

Since 0(0) = I, we obtain that P; = I - / { * Thus finally

the Lnplace-Stieltjes transform of W (x) is given by

(32) A )(s) - '6 . a ) (s)

whence (9) follows by inversion. This completes the proof of Theorem 1.

EXAMPLES. (I) Suppose that F(x) =I - a . (x 0 O) and

H(x) is arbitrary. In this case P = I/A . If A A < 1, then

(33) flIs) - L
SS

and thus by (32) fls) l(s), i.e., W(x) ()

(11) Suppose that F(x) is arbitrary and H(x) 1 - e l

(z ? 0). In this case -A a l/. If >lthen

(34) (1(s) = (I - 8) + 5

where z = 5 is the only root of z * (L(i-z)) inside the unit

circle. Now if we suppose that F(x) is not a "Lattice distribution

function, then we obtain by (32) that

From (3)

(36) W(z) = I - 8 e" (18)x if x t 0,



and from (35)

(37) w*(x) i(i if x o.

4. THE LiMITING DISTRIBLTION OF THE QUEUE SIZE. The follow-

ing two theorems are concerned with the limiting distribution of the

queue size. Foriulas (39) and (47) were first foumd by Mr. M. AczA1

(oreal comunication made in January 1958 during a neeting on

"Quouing Theory and Practice" arrangod by the Inastitute for Enc.n ex'ing

Production of the University of Birmingham, England). Formula (1.7)

has also been proved by T. Kaidata [7]. Under some restrictive

conditions the existence of the limiting distribution of the queue

size for many-server queues has been investigated by P.D. Finch m.
THE0 Ki4 2. If A < and F(x) is not a lattice distribution

lirn P1(t) w kj = P* (k 0,, ... ) xists aznd - independent of
t-> 00 k--de'o

the Sr.ta1e e., We have

(38) 1o=

and for k 1,2,
OD

(39) Pk 5 Fk. (x - Fk(X)jdI(x): F'(x1)j
0

where Fk(X) denotes the k-th iterated convolutio n of F(x) with

,tself Fo(x)- 1 Lf r x 0, and F(x) = X < 0; W(x) is

defined-bl (5); and (x ) is defined by (10). If . , then

I.Lm Pi(t) k3 0 (k 0 0, 1, ... ) irrespective of the initiai.

quee size.



PROOF. If we define A as the event that the queue size is

k (k = 0,l, ... ), then this event satisfies the conditions of

Lemma 1. Accordingly if A < P and F(x) is not a lattice distribution

function, then the limiting distribution lim P[V(t) E k? existst-> 0o
and is indeoendent of the initial state. If A > P, then

lini P1(t) <kj = 0 (k = l, ... )o This follows from (50) whicht-> 0o
will be proved later.

REMARK 3. Wa shall give a direct proof for the case A > 3

Denote by 8(t) the number of departur6s in the time interval (0,t0

and by V(t) the number of arrivals in (O.0. Then 9(t) = 0(O) + P(t)

8(t) , whence

By Doob's theorem lir )(t)/t 1/P and lir sup 8(t)/t &/.A
t-> 0o t-> (Xo

with probability one. Since 11M 9(O)/t u 0 with probability 1
t-> W

we obtain from (40) that

lim Inf > 0t- > 00

with probability one, i.e.,

(4) P L lm 9(t) W 003 U

To find P for k u 1,2, ... we can write that

Pj~(t) = kj n Q0(t) + o S [J - H(t-u-7)2
k 0p~~-)-F~-'



(42) dy Pj4(u) S y 1 0(u) a d m(u)

where Qk(t) is the probability that the queue size is k at time t

and there is no arrival in the time interval (O,tJ. The second term

on the right hand side of (12) can be obtained in the following way:

The customer being served at time t arrives at time u (0 1 u ; t),

his waiting time is y (0 y t t-u) and in the interval (u,tj k-i

customers arrive. If < and F(x) is not a lattice distribution
function then 1 m Pjj(u) y19(u) = 0) = W(y) where W(y) is

ut-oo

defined by (5). By using (29) we obtain from (42) that lim Ptg(t)= ki Pk

where Pk is given by (39) for k 1,2, ... . If k - 0 , then

P-= '/ , because

(43) M P.(t) oj 1- * 1 .-..
t4 ot

RfL~ARI 4. If

0
is finite, then

(45~) 15 *-n+.

An intuitive proof is as follows: ObviousLy

9(u) du - 5 + Xi)
0

is bounded with probability 1, i.e.,

(46) 1 +A t (u)du lm +-- (W.()
tonlpoo t1 .oOD



with probability one. For, by (17) y(t)/t - 1/p with

probability 1, by the strong law of large numbers

1 Vtt->o0o,-

with probability 1, and by the ergodic theorem

with probabiliby 1. If we suppose that £g(t)j is a stationary

process, then evidently

k :ek

for every t a 0, and if we form the expectation of (46) we obtain

(45).
THEORM4 3. .' -A< 3, i, li P[n a = Pk (k 1,2, ...

n* oo

exists independent of the initial Queue size andwe have

00

(47) k SoCkx-Fk+Pjc)JdW(x) *H(x)2

for eveEX k 1rrespective of the initial .tueus size.

PROOF. The event 1n+kl k occurs if and only if the

n-th arriving customer departs before the n+k+l st customer

arrives, i.e., if and only if the queue size Immediately after

the departure of the n-th arriving customer is ik. Thus for

arbitrary initial queue size F(O) we have

(4.8) Pt[i+k+l . kj [I P k+,.(4) dIrlf)W H x)]



where Wn(x) uP (n * xj , because the queue size iiediately after

the departure of the n-th arriving customer is equal to the number

of arrivals during the waiting time and the service time of the n-th

arriving customer.

If < V, then lim Wn(x) = W(x) and by (48)
n-> o0

,whikh proves (47).

If A a then lir Wn(x) 0 for every x and by (48)
n-> oo

(o) ern PtS1k 0

for every 1z,
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